Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 20(23): 14617-14647, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414818

RESUMO

Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.

2.
J Phys Chem A ; 120(1): 106-17, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26669676

RESUMO

Isoprene epoxydiols (IEPOX) are formed in high yield as second-generation products of atmospheric isoprene oxidation in pristine (low-NO) environments. IEPOX has received significant attention for its ability to form secondary organic aerosol, but the fate of IEPOX in the gas phase, and those of its oxidation products, remains largely unexplored. In this study, three dihydroxycarbonyl compounds with molecular formula of C4H8O3, putative products of IEPOX oxidation, are synthesized to determine their isomer-specific yields from IEPOX. We find that 3,4-dihydroxy-2-butanone (DHBO) comprises 43% and 36% of the products from cis- and trans-ß-IEPOX, respectively, and is by far the most abundant C4H8O3 dihydroxycarbonyl compound produced by this mechanism. OH is found to react with DHBO with a rate coefficient of 1.10 × 10(-11) cm(3) molecule(-1) s(-1) at 297 K, forming two hydroxydicarbonyl compounds that share the molecular formula C4H6O3 with unitary yield. The results of this study are compared with field observations and used to propose a multigenerational mechanism of IEPOX oxidation. Finally, global simulations using GEOS-Chem, a chemical transport model, show that the C4H8O3 dihydroxycarbonyl compounds and their oxidation products are widespread in the atmosphere and estimate annual global production of C4H8O3 dihydroxycarbonyls to be 54 Tg y(-1), primarily as DHBO.

3.
J Phys Chem A ; 120(9): 1441-51, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26327174

RESUMO

The atmospheric oxidation of isoprene by the OH radical leads to the formation of several isomers of an unsaturated hydroxy hydroperoxide, ISOPOOH. Oxidation of ISOPOOH by OH produces epoxydiols, IEPOX, which have been shown to contribute mass to secondary organic aerosol (SOA). We present kinetic rate constant measurements for OH + ISOPOOH using synthetic standards of the two major isomers: (1,2)- and (4,3)-ISOPOOH. At 297 K, the total OH rate constant is 7.5 ± 1.2 × 10(-11) cm(3) molecule(-1) s(-1) for (1,2)-ISOPOOH and 1.18 ± 0.19 × 10(-10) cm(3) molecule(-1) s(-1) for (4,3)-ISOPOOH. Abstraction of the hydroperoxy hydrogen accounts for approximately 12% and 4% of the reactivity for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. The sum of all H-abstractions account for approximately 15% and 7% of the reactivity for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. The major product observed from both ISOPOOH isomers was IEPOX (cis-ß and trans-ß isomers), with a ∼ 2:1 preference for trans-ß IEPOX and similar total yields from each ISOPOOH isomer (∼ 70-80%). An IEPOX global production rate of more than 100 Tg C each year is estimated from this chemistry using a global 3D chemical transport model, similar to earlier estimates. Finally, following addition of OH to ISOPOOH, approximately 13% of the reactivity proceeds via addition of O2 at 297 K and 745 Torr. In the presence of NO, these peroxy radicals lead to formation of small carbonyl compounds. Under HO2 dominated chemistry, no products are observed from these channels. We suggest that the major products, highly oxygenated organic peroxides, are lost to the chamber walls. In the atmosphere, formation of these compounds may contribute to organic aerosol mass.

4.
Proc Natl Acad Sci U S A ; 112(5): E392-401, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605913

RESUMO

We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m(-2)⋅s(-1)). GEOS-Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.


Assuntos
Florestas , Poluentes Atmosféricos/química , Oxirredução
5.
J Phys Chem A ; 118(9): 1622-37, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24555928

RESUMO

Eight distinct hydroxy nitrates are stable products of the first step in the atmospheric oxidation of isoprene by OH. The subsequent chemical fate of these molecules affects global and regional production of ozone and aerosol as well as the location of nitrogen deposition. We synthesized and purified 3 of the 8 isoprene hydroxy nitrate isomers: (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol and 3-methyl-2-nitrooxybut-3-ene-1-ol. Oxidation of these molecules by OH and ozone was studied using both chemical ionization mass spectrometry and thermo-dissociation laser induced fluorescence. The OH reaction rate constants at 300 K measured relative to propene at 745 Torr are (1.1 ± 0.2) × 10(-10) cm(3) molecule(-1) s(-1) for both the E and Z isomers and (4.2 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1) for the third isomer. The ozone reaction rate constants for (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol are (2.7 ± 0.5) × 10(-17) and (2.9 ± 0.5) × 10(-17) cm(3) molecule(-1) s(-1), respectively. 3-Methyl-2-nitrooxybut-3-ene-1-ol reacts with ozone very slowly, within the range of (2.5-5) × 10(-19) cm(3) molecule(-1) s(-1). Reaction pathways, product yields, and implications for atmospheric chemistry are discussed. A condensed mechanism suitable for use in atmospheric chemistry models is presented.


Assuntos
Butadienos/química , Hemiterpenos/química , Hidróxidos/química , Nitratos/química , Ozônio/química , Pentanos/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...